Congruent number problem

- A thousand year old problem

Maosheng Xiong

Department of Mathematics,
Hong Kong University of Science and Technology

A numerical example

$$
E: \quad y^{2}=x^{3}-5 x+8
$$

The point $P=(1,2)$ is on the curve $E(\mathbb{Q})$. To compute $2 P=P+P$, take derivative on both sides of $y^{2}=x^{3}-5 x+8$ we have

$$
2 y y^{\prime}=3 x^{2}-5 \Longrightarrow y^{\prime}=\frac{3 x^{2}-5}{2 y}
$$

So the slope of the tangent line to the elliptic curve at $P=(1,2)$ (evaluating y^{\prime} for $x=1, y=2$) is $-\frac{1}{2}$. Thus the tangent line is

$$
L: \quad y-2=-\frac{1}{2}(x-1) \Longrightarrow x=-2 y+5
$$

A numerical example

$$
\begin{gathered}
E: \quad y^{2}=x^{3}-5 x+8 \\
L: \quad x=-2 y+5 \quad \text { (the tangent line) }
\end{gathered}
$$

The point $P=(1,2)$ is on the curve $E(\mathbb{Q})$.
Combining the two equations L and E we have

$$
y^{2}=(-2 y+5)^{3}-5(-2 y+5)+8
$$

that is,

$$
y^{3}-\frac{59}{8} y^{2}+\frac{140}{8} y-\frac{108}{8}=0
$$

This cubic equation has three solutions $y_{1}=y_{2}=2$ and y_{3}, satisfying

$$
y_{1}+y_{2}+y_{3}=\frac{59}{8} \Longrightarrow y_{3}=\frac{27}{8}
$$

So the x-coordinate of the point is $x_{3}=-2 y_{3}+5=-\frac{7}{4}$.

A numerical example

We find the extra rational point

$$
x_{3}=-\frac{7}{4}, y_{3}=\frac{27}{8} .
$$

Then

$$
2 P=P+P=\left(-\frac{7}{4},-\frac{27}{8}\right) .
$$

A numerical example

$$
E: \quad y^{2}=x^{3}-5 x+8
$$

Let

$$
Q=\left(-\frac{7}{4},-\frac{27}{8}\right)
$$

Using the secant line construction, similarly we find that

$$
3 P=P+Q=\left(\frac{553}{121},-\frac{11950}{1331}\right) .
$$

Similarly,

$$
4 P=\left(\frac{45313}{11664},-\frac{8655103}{1259712}\right) .
$$

Heron's theorem

Theorem (Heron of Alexandria, 2000 years ago)
The area n of a triangle with three sides $a, b, c>0$ is given by

$$
n^{2}=s(s-a)(s-b)(s-c)
$$

where $s=\frac{a+b+c}{2}$.

Heron triangle

Definition (Heron of Alexandria, 2000 years ago)
A triangle with rational sides and rational area is called a Heron triangle.

- Heron observed that $a=13, b=14, c=15$ is a triangle with area $n=84$, so 84 is the area of a Heron triangle.
- A generalized congruent number problem is to ask if n is the area of a Heron triangle with a certain angle.

Heron triangle

Definition (Heron of Alexandria, 2000 years ago)
A triangle with rational sides and rational area is called a Heron triangle.
A rational number n occurs as the area of a Heron triangle if and only if there are positive rational numbers a, b, c and a real number $\theta \in(0, \pi)$ such that

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \theta, \quad \text { and } 2 n=b c \sin \theta
$$

The equations imply that $(\cos \theta, \sin \theta)$ must be a rational point $\neq(\pm 1,0)$ on the upper half of the unit circle $x^{2}+y^{2}=1$. Since all rational points of the unit circle can be parameterized by $t \in \mathbb{Q}$, there is a rational number $t>0$ such that

$$
\sin \theta=\frac{2 t}{t^{2}+1}, \quad \cos \theta=\frac{t^{2}-1}{t^{2}+1}
$$

t-congruent number

Definition

Fix a positive rational number t. A rational number n is called t-congruent if there are positive rational numbers a, b, c such that

$$
a^{2}=b^{2}+c^{2}-2 b c \frac{t^{2}-1}{t^{2}+1}, \quad \text { and } 2 n=b c \frac{2 t}{t^{2}+1}
$$

- A rational number n is t-congruent if n occurs as the area of a Heron triangle with given angle θ where

$$
\sin \theta=\frac{2 t}{t^{2}+1}, \quad \cos \theta=\frac{t^{2}-1}{t^{2}+1}
$$

- The case $t=1$ (thus $\theta=\frac{\pi}{2}$) corresponds to the congruent number problem.

t-congruent number

Theorem

Fix a positive rational number t. Then n is a t-congruent number if and only if the following:
(i) Either both n / t and $t^{2}+1$ are nonzero rational squares,
(ii) or the elliptic curve

$$
C_{n, t}: \quad y^{2}=x(x-n / t)(x+n t)
$$

has a rational point (x, y) with $y \neq 0$.
This will be an exercise.

The congruent number problem

Hint: For the congruent number problem, from the equations

$$
a^{2}+b^{2}=c^{2}, \quad n=\frac{a b}{2}
$$

How shall we find a rational point (x, y) on $E: n y^{2}=x^{3}-x$?
You may use the following idea: take $c=a+t$, then $a^{2}+b^{2}=c^{2}$ implies that

$$
2 a t=b^{2}-t^{2}
$$

Multiplying b on both sides, using $a b=2 n$, we find

$$
4 n t=b^{3}-b t^{2}
$$

The congruent number problem

Diving t^{3} on both sides of the previous equation, noting that $t=c-a \neq 0$, we obtain

$$
\frac{4 n}{t^{2}}=\left(\frac{b}{t}\right)^{3}-\frac{b}{t}
$$

Thus the point (x, y) with $x=\frac{b}{t}, y=\frac{2}{t}$ is on the elliptic curve

$$
n y^{2}=x^{3}-x
$$

You may use this idea to prove the theorem on the relation between t congruent numbers and the corresponding elliptic curves.

t-congruent number

Theorem

Any square-free positive integer n is a t-congruent number for some positive rational number t.

Proof For any $r \in \mathbb{Q}>0$ with $r \neq 1$, the rational triangle with three sides $\left(2,\left|r-r^{-1}\right|, r+r^{-1}\right)$ is a right triangle with area $\left|r-r^{-1}\right|$. Hence for any n, the idea is to choose appropriate $r, s \in \mathbb{Q}_{>0}$ with $r, s \neq 1$ and to glue the rational two right triangles $\left(2,\left|r-r^{-1}\right|, r+r^{-1}\right)$ and (2, $\left|s-s^{-1}\right|, s+s^{-1}$) along the side of 2 , to obtain a Heron triangle with area $\left|r-r^{-1}\right|+\left|s-s^{-1}\right|$, which is hopefully $n \cdot \square$. It turns out we can take (assuming that $n>6$)

$$
r=\frac{2 n}{n-1}, \quad s=\frac{n-2}{4}
$$

then the total area is $\frac{(n+2)^{2}}{4 n}$ which works.

